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Background: Fluorodeoxyglucose f18 positron emission tomography (18F-FDG PET) is regarded as the 
only functional neuroimaging biomarker for degeneration which can be used to increase the certainty of 
Alzheimer’s disease (AD) pathophysiological process in research settings or as an optional clinical tool where 
available. Although a decline in FDG metabolism was confirmed in some regions known to be associated 
with AD, there was little known about the genetic association of FDG metabolism in AD cohorts. In this 
study, we present the first genome-wide association study (GWAS) analysis of brain FDG metabolism. 
Methods: A total of 222 individuals were included from the Alzheimer’s Disease Neuroimaging Initiative 1 
(ADNI-1) cohort. All subjects were restricted to non-Hispanic Caucasians and met all quality control (QC) 
criteria. Associations of 18F-FDG with the genetic variants were assessed using PLINK 1.07 under the 
additive genetic model. Genome-wide associations were visualized using a software program R 3.2.3.
Results: One significant SNP rs12444565 in RNA-binding Fox1 (RBFOX1) was found to have a strong 
association with 18F-FDG (P=6.06×10–8). Rs235141, rs79037, rs12526331 and rs12529764 were identified as 
four suggestive loci associated with 18F-FDG.
Conclusions: Our study results suggest that a genome-wide significant SNP (rs12444565) in the RBFOX1, 
and four suggestive loci (rs235141, rs79037, rs12526331 and rs12529764) are associated with 18F-FDG. 
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Introduction

A decline in glucose metabolism in the posterior cingulate 
cortex (PCC) is one of the earliest biomarkers for AD, which 
are present years before symptom onset (1). Furthermore, it 
actually predicts the conversion from healthy aging to mild 
cognitive impairment (MCI), and from MCI to AD (2,3), 
signifying its important role in AD progression. Evidences 
showed that glucose metabolic disorder occurs before the 
onset of AD and glucose metabolism is a sensitive indicator 
of cognitive and functional changes in AD and MCI, 
which may be valuable in predicting cognitive decline in 
future (4,5). A study demonstrated that enhancing glucose 
uptake in neurons has a strong neuroprotective effect 
which can improve proteostasis in the fly model of AD (6). 
AD patients typically show a very characteristic pattern of 
hypometabolism in the posterior cingulate, parietotemporal 
cortices and frontal lobes (the so-called AD metabolic 
pattern).

Fluorodeoxyglucose f18, also known as fluorodeoxyglucose 
and abbreviated as 18F-FDG or FDG, is a radioactive drug 
used in medical imaging of positron emission tomography 
(PET). The uptake of 18F-FDG by tissues is a marker of 
glucose uptake which is closely related to tissue metabolism. 
Currently, 18F-FDG PET is gaining increased acceptance 
as a valuable tool to investigate pre-symptomatic AD  
(7-10). 18F-FDG PET, which enables evaluation of cerebral 
glucose metabolism, is increasingly used to support clinical 
diagnosis of suspected dementia patients. According to 
the new recommendations by the Alzheimer’s Association, 
18F-FDG PET is regarded as the only functional 
neuroimaging biomarker for degeneration which can be 
used to increase the certainty of AD pathophysiological 
process in research settings (clinical trials, investigational 
studies) or regarded as an optional clinical tool where 
available (11-13).

Although a decline in FDG metabolism was confirmed 
in some regions known to be associated with AD, there 
was little known about the genetic association of FDG 
metabolism in AD cohorts. We hypothesized that FDG 
may constitute a suitable endophenotype for a GWAS 
designed to identify genetic factors and highlight relevant 
physiological and pathophysiological processes. In this study, 
we present the first GWAS analysis of FDG metabolism 
in Alzheimer’s Disease Neuroimaging Initiative 1  
(ADNI-1) database. Through the analysis of AD cases, we 
hope to identify novel variants specific to FDG metabolism 
by 18F-FDG PET.

Methods

ADNI dataset

Data used in this study were obtained from the ADNI 
database (www.loni.ucla.edu/ADNI). The ADNI was 
launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD, VA Medical 
Center and University of California-San Francisco. ADNI 
was established to test whether serial magnetic resonance 
imaging (MRI), PET, other biomarkers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of MCI and early AD.

Subjects

In this study, a total of 222 individuals (AD =37, MCI =126, 
healthy controls, HC =59) were included from the ADNI-1  
cohort. All subjects were restricted to non-Hispanic 
Caucasians and met all quality control (QC) criteria. The 
analysis was restricted to non-Hispanic Caucasians to 
reduce potential bias from population stratification which 
might confound GWAS results. The detailed demographic 
information has been shown in Table 1.

Glucose metabolism assessed by 18F-FDG PET and QC

The data for FDG analysis were obtained from UC 
Berkeley and Lawrence Berkeley National Laboratory 
(http://adni.loni.usc.edu/data-samples/access-data/). In 
the analysis, five regions containing the left and right 
angular gyri, bilateral posterior cingulate, the left and 
right temporal gyri were analyzed as meta ROIs (regions 
of interest). The short procedures were as follows. Firstly, 
we downloaded the PET data from LONI (http://loni.usc.
edu/). Then, these images were normalized to the MNI 
PET templates in SPM. The average numbers of FDG 
scans for each subject were calculated, and the intensity 
values were computed using SPM subroutines. Finally, the 
average value of the top 50% of voxels in a hand-drawn 
pons/cerebellar vermis region was extracted from the T1 
template in the MNI space. The average of each meta ROI 
was standardized through the pons/vermis reference region 
average (Landau et al., 2011). 18F-FDG PET measurement 
366–399 MBq of 18F-FDG was injected intravenously into 
all subjects and the follow-up time was 30 min. During this 
time, the subjects were undisturbed and resting quietly in 
a dark room with their eyes open. The subjects were then 
imaged with their eyes open for an 8-min image collection 

http://adni.loni.usc.edu/data-samples/access-data/
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consisting of four 2-min dynamic frames.

Genotyping and QC

The samples were genotyped with the Human 610-Quad 
BeadChip. Stringent QC assessment was performed using 
the PLINK software with the following criteria: minimum 
call rate for SNPs and individuals >98%, minimum minor 
allele frequencies (MAF) >0.04, and Hardy-Weinberg 
equilibrium test P>0.001. The restriction to SNPs with a 
MAF greater than 4% served to reduce the probability of 
false positive results and enhance statistical power. Rs7412 
and rs429358 that define apolipoprotein E (APOE) alleles, 
were genotyped separately with an APOE genotyping kit.

Statistical analyses

Associations of 18F-FDG with the genetic variants were 
assessed using PLINK 1.07 under an additive genetic 
model. The thresholds of P<10–6 and P<10–7 were used 
for suggestive and genome-wide significant associations 
respectively. Our analysis included a total of 319,792 
genotyped variants. Age, gender and diagnosis were 
included as covariates. Bonferroni correction of the P values 
by the total number of acceptable quality SNPs was used for 
multiple test correction. Genome-wide associations were 
visualized using a software program R 3.2.3.

Results

The sample contained 222 (AD =37, MCI =126, HC =59) 
non-Hispanic Caucasians in the ADNI-1 cohort. Table 1 
shows the detailed demographic information and data of 
18F-FDG in each group.

Figure 1 displays the Manhattan plot of 18F-FDG in 
the ADNI-1 cohort. After adjustment for age, gender 

and diagnosis, a genome-wide significant association of 
rs12444565 with 18F-FDG was detected. The analysis 
identified four additional SNPs with suggestive association 
(rs235141, rs79037, rs12526331 and rs12529764).

One significant SNP rs12444565 in RNA-binding Fox1 
(RBFOX1) was found to have a strong association with 
18F-FDG (P=6.06×10–8) (in Table 2). This locus survived 
after multiple testing based on both permutation and 
Bonferroni corrections [empirical P (EMP1) =0.0002; 
permutation-based corrected empirical P (EMP2) =0.005; 
Bonferroni corrected P=0.005]. SNPs which did not reach 
genome-wide significance and whose P values were between 
10–7 and 10–6 including rs235141, rs79037, rs12526331 and 
rs12529764 were also listed in Table 2.

Discussion

A GWAS was performed in ANDI-1 to study the effect of 
genetic variation on the cerebral glucose metabolism. The 
use of quantitative traits in GWAS has been shown to have 
an increased statistical power and a decreased requirement 
of sample size, so this study has more advantages than 
traditional case-control designs (14-16). We identified 
a genome-wide significant association of a SNP in the 
regions of RBFOX1 with glucose metabolism and four 
additional SNPs with suggestive association (rs235141, 
rs79037, rs12526331 and rs12529764) by using 18F-FDG 
as quantitative traits.

RBFOX1 ,  a neuronal RNA binding protein, also 
known as Ataxin-2-binding protein 1 (A2BP1) or FOX1, 
was initially identified as an interacting partner of  
ATAXIN-2 (17) and was expressed in neuronal tissues, 
muscle and heart (18,19). The RBFOX1 gene locus is 
located on chromosome region 16p13.3 (20). Through 
the combination with (U) of GCAUG element in mRNA 
precursor, RBFOX1 has been reported to play a key 

Table 1 Demographic information of sample characteristics

ADNI-1 baseline diagnosis AD (n=37) MCI (n=126) HC (n=59) Total (n=222)

Age (years), mean ± SD (range) 74.44±7.460 (58.2–89.6) 72.82±7.339 (55.0–87.3) 74.50±5.550 (62.3–88.1) 73.54±6.950 (55.0–89.60)

Gender, male/female 19/18 68/58 30/29 117/105

APOE ε4 carrier (%) 62.16 49.21 33.90 47.30

FDG, mean ± SD 5.50±0.722 6.16±0.636 6.53±0.590 6.12±0.718

AD, Alzheimer’s disease; APOE, Apolipoprotein E; HC, healthy control; MCI, mild cognitive impairment; SD, standard deviation. 
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role in alternative splicing in the key genes of neuronal 
development, such as calcitonin/calcitonin gene related 
peptide, CaV1.2 voltage-controlled calcium channel and 
N-methyl-D-aspartate (NMDA) receptor 1 (18,19,21-23). 
Defects in these key processes may lead to the structural 
and functional defects of cortical neurons, leading to the 
pathophysiology of neurodevelopmental disorders with 
RBFOX1 abnormalities (24). Genetic studies, including 
GWAS, have proven that RBFOX1 is associated with many 
neuropsychiatric disorders including autism spectrum 
disorder (ASD), epilepsy, attention deficit hyperactivity 
disorder (ADHD), generalised anxiety disorder (GAD), 
intellectual disabilities (IDs), and schizophrenia (25-30), 
which strongly suggest that partial RBFOX1 deficiency is a 

risk factor for the recurrence of human neurodevelopmental 
defects.

It has been reported that RBFOX1 plays a pivotal role in 
neuronal excitation regulation, which affects susceptibility 
to epilepsy (23,31). Many studies have suggested that a lot 
of RBFOX1 target transcripts play a role in epileptogenesis 
(32-34), while the rare external absence of RBFOX1 gene 
increases the risk of idiopathic generalized epilepsy (35). 
In mice, the brain’s specific homozygous and heterozygous 
RBFOX1 knockouts showed spontaneous epileptic seizures 
and dramatic epileptic responses without altering the 
morphology of the brain (23).

Human genetic studies have identified RBFOX1 as a 
candidate gene for ASD. Studies have shown RBFOX1 

Figure 1 Genome-wide association results for 18F-FDG in ADNI-1. The y-axis shows the P values (on the –log10 scale) for each 
association test. The x-axis is the chromosomal position of each SNP. The gold horizontal line at 10−7 indicates genome-wide significance. A 
genome-wide significant association of rs12444565 with 18F-FDG was detected. Four additional SNPs with suggestive association (rs235141, 
rs79037, rs12526331 and rs12529764) were identified. 18F-FDG, fluorodeoxyglucose f18; ADNI-1, Alzheimer’s Disease Neuroimaging 
Initiative 1.
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Table 2 SNPs associated with 18F-FDG

SNP CHR Position Associated area 18F-FDG P value

rs12444565 16 7347272 Left angular 5.89×10–8

rs235141 16 66209852 Left angular 3.80×10–7

rs79037 22 27037216 Left angular 4.95×10–7

rs12526331 6 80086431 Cigulumpost 1.57×10–7

rs12529764 6 80086864 Cigulumpost 1.57×10–7

18F-FDG, fluorodeoxyglucose f18; CHR, chromosome.
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target transcripts are overlapping significantly in  
ASD (31). In addition, RBFOX1 was found to act as a “hub” 
in the gene transcription group network in the brain of 
ASD patients (31). Abnormal RBFOX1 gene encoding an 
mRNA-splicing factor, has been proved to cause ASD. 
In ASD patients, the expression of RBFOX1 was reduced 
in relation to the splicing of the target exon (36). A large 
number of splicing changes were detected in 48 genes in 
the brain of a group of ASD patients, whose RBFOX1 was 
estimated to be down-regulated (36).

Rs235141, rs79037, rs12526331 and rs12529764 (located 
on chromosome region 16:66209852, 22:27037216, 
6:80086431 and 6:80086864 respectively) were four 
suggestive loci associated with glucose metabolism. There 
were no relevant studies available to study their roles and 
relationships with neuropsychiatric disorders.

The limitation of this study was the moderate sample size 
of GWAS. In addition, ADNI data was restricted to non-
Hispanic Caucasians to avoid genetic stratification due to 
race. Therefore, our results can not represent other races.

To conclude, we detected a genome-wide significant 
SNP (rs12444565) in RBFOX1 and four suggestive loci 
(rs235141, rs79037, rs12526331 and rs12529764) associated 
with 18F-FDG. Accumulating evidence suggested that 
aberrations in RBFOX1-regulated circuitry were risk factors 
for multiple neuropsychiatric disorders, especially epilepsy 
and ASD. Therefore, 18F-FDG PET may be applied to 
some neuropsychiatric disorders especially epilepsy and 
ASD to predict the occurrence and development as well 
as therapy of the diseases through the genotyping in the 
future. Independent, larger datasets will be needed to 
replicate research to confirm this result.
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